These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Distinct roles for recombinant cytosolic 5'-nucleotidase-I and -II in AMP and IMP catabolism in COS-7 and H9c2 rat myoblast cell lines. Author: Sala-Newby GB, Freeman NV, Skladanowski AC, Newby AC. Journal: J Biol Chem; 2000 Apr 21; 275(16):11666-71. PubMed ID: 10766785. Abstract: Catabolism of AMP during ATP breakdown produces adenosine, which restores energy balance. Catabolism of IMP may be a key step regulating purine nucleotide pools. Two, cloned cytosolic 5'-nucleotidases (cN-I and cN-II) have been implicated in AMP and IMP breakdown. To evaluate their roles directly, we expressed recombinant pigeon cN-I or human cN-II at similar activities in COS-7 or H9c2 cells. During rapid (more than 90% in 10 min) or slower (30-40% in 10 min) ATP catabolism, cN-I-transfected COS-7 and H9c2 cells produced significantly more adenosine than cN-II-transfected cells, which were similar to control-transfected cells. Inosine and hypoxanthine concentrations increased only during slower ATP catabolism. In COS-7 cells, 5'-nucleotidase activity was not rate-limiting for inosine and hypoxanthine production, which was therefore unaffected by cN-II- and actually reduced by cN-I- overexpression. In H9c2 cells, in which 5'-nucleotidase activity was rate-limiting, only cN-II overexpression accelerated inosine and hypoxanthine formation. Guanosine formation from GMP was also increased by cN-II. Our results imply distinct roles for cN-I and cN-II. Under the conditions tested in these cells, only cN-I plays a significant role in AMP breakdown to adenosine, whereas only cN-II breaks down IMP to inosine and GMP to guanosine.[Abstract] [Full Text] [Related] [New Search]