These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Respiratory gas transport, metabolic status, and locomotor capacity of the Christmas Island red crab Gecarcoidea natalis assessed in the field with respect to dichotomous seasonal activity levels. Author: Adamczewska AM, Morris S. Journal: J Exp Zool; 2000 May 01; 286(6):552-62. PubMed ID: 10766964. Abstract: Red crabs, Gecarcoidea natalis, exhibit seasonal activity patterns: low activity during the dry season when they shelter in burrows to avoid dehydration, and high activity during the wet season. Red crabs were examined in situ in the rainforest of Christmas Island to determine if there were underlying seasonal differences in the capacity for exercise and associated metabolism. During both seasons, free-ranging (FR) crabs engaged in their normal activities and, together with crabs induced to exercise for 5 min, were sampled for haemolymph and muscle tissue. Respiratory gases in the haemolymph and key metabolites were measured to assess differences in metabolic status of FR and exercised crabs. Actively foraging FR crabs during the wet season exhibited a relative haemolymph hypoxia (2.9 kPa) and accumulated an extra 3 mmol. litre(-1) of CO(2) compared to the relatively inactive FR crabs during the dry season. Wet-season crabs appeared to be in a state of relative respiratory acidosis compared to dry-season animals. This hypercapnia may arise as a consequence of a relative hypoventilation in animals with a relatively higher metabolic rate during the wet season. Oxygenation of pulmonary and arterial haemolymph was similar and remained high after 5 min of exercise, indicating that the gills and lungs functioned similarly in gas exchange in both FR and exercised crabs. During exercise, venous O(2) reserves decreased and red crabs experienced a mixed respiratory/metabolic acidosis. Similar changes, after 5 min of enforced exercise, in metabolite concentrations, pH and respiratory gas status in the haemolymph during both sampling seasons suggest that the crabs maintain similar capacity to increase exercise during the wet and the dry seasons, despite the differences in underlying physiological status. This is important since after prolonged inactivity during the dry season, with the arrival of moonsoonal rains, red crabs must engage in their annual breeding migration.[Abstract] [Full Text] [Related] [New Search]