These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Epoxyalkyl glycosides of D-xylose and xylo-oligosaccharides are active-site markers of xylanases from glycoside hydrolase family 11, not from family 10. Author: Ntarima P, Nerinckx W, Klarskov K, Devreese B, Bhat MK, Van Beeumen J, Claeyssens M. Journal: Biochem J; 2000 May 01; 347 Pt 3(Pt 3):865-73. PubMed ID: 10769193. Abstract: A series of omega-epoxyalkyl glycosides of D-xylopyranose, xylobiose and xylotriose were tested as potential active-site-directed inhibitors of xylanases from glycoside hydrolase families10 and 11. Whereas family-10 enzymes (Thermoascus aurantiacus Xyn and Clostridium thermocellum Xyn Z) are resistant toelectrophilic attack of active-site carboxyl residues, glycosidehydrolases of family 11 (Thermomyces lanuginosus Xyn and Trichoderma reesei Xyn II) are irreversibly inhibited. Theapparent inactivation and association constants (k(i), 1/K(i)) are one order of magnitude higher for thexylobiose and xylotriose derivatives. The effects of the aglycone chainlength can clearly be described. Xylobiose and n-alkyl beta-D-xylopyranosides are competitive ligands and provide protectionagainst inactivation. MS measurements showed 1:1 stoichiometries inmost labelling experiments. Electrospray ionization MS/MS analysisrevealed the nucleophile Glu(86) as the modified residue inthe T. lanuginosus xylanase when 2,3-epoxypropyl beta-D-xylopyranoside was used, whereas the acid/base catalyst Glu(178) was modified by the 3,4-epoxybutyl derivative. The active-site residues Glu(86) and Glu(177) in T. reesei Xyn II are similarly modified, confirming earlier X-raycrystallographic data [Havukainen, Törrönen, Laitinen and Rouvinen (1996)Biochemistry 35, 9617-9624]. The inability of the omega-epoxyalkyl xylo(oligo)saccharide derivatives to inactivate family-10enzymes is discussed in terms of different ligand-subsiteinteractions.[Abstract] [Full Text] [Related] [New Search]