These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Subnuclear trafficking of estrogen receptor-alpha and steroid receptor coactivator-1.
    Author: Stenoien DL, Mancini MG, Patel K, Allegretto EA, Smith CL, Mancini MA.
    Journal: Mol Endocrinol; 2000 Apr; 14(4):518-34. PubMed ID: 10770489.
    Abstract:
    We have analyzed ligand-dependent, subnuclear movements of the estrogen receptor-alpha (ERalpha) in terms of both spatial distribution and solubility partitioning. Using a transcriptionally active green fluorescent protein-ERalpha chimera (GFP-ERalpha), we find that 17beta-estradiol (E2) changes the normally diffuse nucleoplasmic pattern of GFP-ERalpha to a hyperspeckled distribution within 10-20 min. A similar reorganization occurs with the partial antagonist 4-hydroxytamoxifen; only a subtle effect was observed with the pure antagonist ICI 182,780. To examine the influence of ligand upon ERalpha association with nuclear structure, MCF-7 cells were extracted to reveal the nuclear matrix (NM). Addition of E2, 4-hydroxytamoxifen, or ICI 182,780 causes ERalpha to partition with the NM-bound fraction on a similar time course (10-20 min) as the spatial reorganization suggesting that the two events are related. To determine the effects of E2 on the redistribution and solubility of GFP-ERalpha, individual cells were directly examined during both hormone addition and NM extraction and showed that GFP-ERalpha movement and NM association were coincident. Colocalization experiments were performed with antibodies to identify sites of transcription (RNA pol Ilo) and splicing domains (SRm160). Using E2 treated MCF-7 cells, minor overlap was observed with transcription sites and a small amount of the total ERalpha pool. Experiments performed with bioluminescent derivatives of ERalpha and steroid receptor coactivator-1 (SRC-1) demonstrated both proteins colocalize to the same NM-bound foci in response to E2 but not the antagonists tested. Deletion mutagenesis and in situ analyses indicate intranuclear colocalization requires a central SRC-1 domain containing LXXLL motifs. Collectively, our data suggest that ERalpha transcription function is dependent upon dynamic early events including intranuclear rearrangement, NM association, and SRC-1 interactions.
    [Abstract] [Full Text] [Related] [New Search]