These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: X-ray structure of azide-bound fully oxidized cytochrome c oxidase from bovine heart at 2.9 A resolution.
    Author: Fei MJ, Yamashita E, Inoue N, Yao M, Yamaguchi H, Tsukihara T, Shinzawa-Itoh K, Nakashima R, Yoshikawa S.
    Journal: Acta Crystallogr D Biol Crystallogr; 2000 May; 56(Pt 5):529-35. PubMed ID: 10771420.
    Abstract:
    Two azide ions were identified, one between the Fe and Cu atoms in the O(2)-reduction site and the other at the transmembrane surface of the enzyme, in the crystal structure of the azide-bound form of bovine heart cytochrome c oxidase at 2.9 A resolution. Two geometries, a mu-1,3 type geometry between the Fe and Cu atoms and a terminal geometry on the Fe atom, are equally possible for an azide ion in the O(2)--reduction site. The other azide molecule was hydrogen bonded to an amide group of an asparagine and a hydroxyl group of tyrosine in a mu-1,1 type geometry. The antisymmetric infrared bands arising from these azide ions, which show essentially identical intensity [Yoshikawa & Caughey (1992), J. Biol. Chem. 267, 9757-9766], strongly suggest terminal binding of the azide to Fe. The electron density of all three imidazole ligands to Cu(B) was clearly seen in the electron-density map of the azide-bound form of bovine heart enzyme, in contrast to the crystal structure of the azide-bound form of the bacterial enzyme [Iwata et al. (1995), Nature (London), 376, 660-669], which lacks one of the three imidazole ligands to Cu(B).
    [Abstract] [Full Text] [Related] [New Search]