These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The two-state cross-bridge model of muscle is an asymptotic limit of multi-state models.
    Author: Zahalak GI.
    Journal: J Theor Biol; 2000 May 07; 204(1):67-82. PubMed ID: 10772849.
    Abstract:
    The relationship between the two-state model of muscle contraction and multi-state models is examined from the perspective of matched asymptotic expansions, under the assumption that transition rates between attached states are fast compared to those between detached and attached states. A detailed formal analysis of a three-state model reveals that the classic Huxley (1957. Prog. Biophys. Biophys. Chem.7, 225-318) rate equation, as modified for thermodynamic self-consistency by Hill et al. (1975. Biophys. J.15, 335-372), governs the "outer" solution of the three-state equations. Thus, the two-state model remains a valid description of muscle dynamics on physiologically relevant time scales, which are slow compared to millisecond-scale transitions between attached states. But the asymptotic analysis reveals also that the cross-bridge force must be considered to be a nonlinear function of the cross-bridge strain, in contrast to the usual assumption of two-state models. This apparent, or effective, force is determined by both the intrinsic stiffness of the cross-bridge and the equilibrium distribution of cross-bridges among attached states. Further, the asymptotic analysis yields an expression for the energy liberation rate that implies a reduced rate in stretch vs. shortening. Some behaviors of multi-state models that are suggested by the three-state analysis are discussed in qualitative terms.
    [Abstract] [Full Text] [Related] [New Search]