These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice. Author: Bisognano JD, Weinberger HD, Bohlmeyer TJ, Pende A, Raynolds MV, Sastravaha A, Roden R, Asano K, Blaxall BC, Wu SC, Communal C, Singh K, Colucci W, Bristow MR, Port DJ. Journal: J Mol Cell Cardiol; 2000 May; 32(5):817-30. PubMed ID: 10775486. Abstract: The beta(1)-adrenergic receptor (AR) is the dominant subtype in non-failing and failing myocardium. beta(1)-AR signaling, by the endogenous neurotransmitter norepinephrine, is central to the regulation of myocardial contractility. In heart failure, the beta(1)-AR undergoes subtype-selective downregulation which may protect against the increased cardiac adrenergic drive associated with this pathophysiological state. To examine the hypothesis that chronically increased beta(1)-AR mediated signaling has adverse myocardial effects, transgenic mice overexpressing the human beta(1)-AR in a cardiac-selective context were produced, utilizing an alpha-myosin heavy chain (MHC) promoter. In these mice, beta(1)-AR protein abundance was approximately 24-46-fold (1-2 pmol/mg protein) that of wild-type mice. Histopathological examination of young (4 months old) and old (approximately 9 months old) transgenic mouse hearts consistently demonstrated large areas of interstitial replacement fibrosis, marked myocyte hypertrophy and myofibrilar disarray. In addition, increased expression of the pre-apoptotic marker, Bax, was observed coincident with regions of fibrosis accompanied by an increased apoptotic index, as measured by TUNEL assay. Older non-transgenic mice exhibited a slight tendency towards a decreased fractional shortening, whereas older beta(1)-AR transgenic mice had a marked reduction in fractional shortening (%FS approximately 30) as determined by echocardiography. Additionally, older beta(1)-AR transgenic mice had an increased left ventricular chamber size. In summary, cardiac-directed overexpression of the human beta(1)-AR in transgenic mice leads to a significant histopathological phenotype with no apparent functional consequence in younger mice and a variable degree of cardiac dysfunction in older animals. This model system may ultimately prove useful for investigating the biological basis of adrenergically-mediated myocardial damage in humans.[Abstract] [Full Text] [Related] [New Search]