These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of the roles of the 594-645 region in human endothelial nitric-oxide synthase in regulating calmodulin binding and electron transfer. Author: Chen PF, Wu KK. Journal: J Biol Chem; 2000 Apr 28; 275(17):13155-63. PubMed ID: 10777622. Abstract: It has been postulated that a segment (residues 594-645) inserted in the FMN subdomain of human endothelial nitric-oxide synthase (eNOS) plays a crucial role in controlling Ca(2+)-dependent CaM binding for eNOS activity. To investigate its functions, we expressed human eNOS in a baculovirus system with deletion of a 45-residue segment from this region (residues 594-606 and 614-645, designated as Delta45eNOS), and characterized the purified mutant enzyme. In contrast with wild-type eNOS, Delta45eNOS exhibited characteristics resembling inducible NOS (iNOS). It contained an endogenously bound CaM, which was essential in folding and stabilizing this mutant enzyme, and retained 60% of L-citrulline formation in 5 mM EGTA. We also produced four N-terminally truncated reductase domains with or without the 45-residue segment, and either including or excluding the CaM-binding sequence. Basal cytochrome c reductase activity of reductase domains without the 45-residue segment was up to 20 fold greater than that of corresponding insert-containing domains, and higher than CaM-stimulated activity of the wild-type enzyme. A series of mutants with smaller fragment deletion in this region such as Delta594-604, Delta605-612, Delta613-625, Delta626-634, Delta632-639, and Delta640-645 mutants were further characterized. The crude lysate of mutants Delta613-625 and Delta632-639 did not show activity in the presence of Ca(2+)/CaM, while other four mutants had activity comparable to that of WTeNOS. The purified Delta594-604 and Delta605-612 proteins had a 3-5-fold higher affinity for Ca(2+)/CaM, but their L-citrulline forming activity was still 80% dependent upon the addition of Ca(2+)/CaM. Both mutants exhibited a low level of the cytochrome c and ferricyanide reductase activities, which either did not respond to (Delta594-604) or slightly enhanced by (Delta605-612) the exogenous CaM. In contrast, activities of Delta626-634 and Delta640-645 like those of WTeNOS were largely Ca(2+)/CaM-dependent. Thus, our findings indicate that the N-terminal half of the 594-645 segment containing residues 594-612 plays a significant role in regulating Ca(2+)/CaM binding.[Abstract] [Full Text] [Related] [New Search]