These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitric oxide reduction, the last step in denitrification by Fusarium oxysporum, is obligatorily mediated by cytochrome P450nor.
    Author: Takaya N, Shoun H.
    Journal: Mol Gen Genet; 2000 Mar; 263(2):342-8. PubMed ID: 10778754.
    Abstract:
    The involvement of cytochrome P450nor (P450nor) is the most striking feature of the fungal denitrifying system, and has never been shown in bacterial systems. To establish the physiological significance of the P450nor, we constructed and investigated mutants of Fusarium oxysporum that lacked the gene for P450nor. We mutated the gene by targeted integration of a disrupted gene into the chromosome of F. oxysporum. The mutants were shown to contain neither P450nor protein nor nitric oxide (NO) reductase (Nor) activity, implying that they are indeed deficient in P450nor. These mutants had apparently lost the denitrifying activity and failed to evolve nitrous oxide (N2O) upon incubation under oxygen-limiting conditions in the presence of nitrate. Their mycelia exhibited normal levels of dissimilatory nitrite reductase (Nir) activity and were able to evolve NO under these conditions. The promoter region of the P450nor gene was fused to lacZ and introduced into the wild-type strain of F. oxysporum. The transformed strain produced beta-galactosidase under denitrifying conditions as efficiently as the wild type does P450nor. These results represent unequivocal genetic evidence that P450nor is essential for the reduction of NO to N2O, the last step in denitrification by F. oxysporum.
    [Abstract] [Full Text] [Related] [New Search]