These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pulmonary alveolar proteinosis is a disease of decreased availability of GM-CSF rather than an intrinsic cellular defect.
    Author: Thomassen MJ, Yi T, Raychaudhuri B, Malur A, Kavuru MS.
    Journal: Clin Immunol; 2000 May; 95(2):85-92. PubMed ID: 10779401.
    Abstract:
    Granulocyte-macrophage colony stimulating factor (GM-CSF) deficient mice develop a pulmonary alveolar proteinosis (PAP) syndrome which is corrected by the administration/expression of GM-CSF. These observations implicate GM-CSF in the pathogenesis of human PAP. We hypothesized that human PAP may involve an intrinsic cellular defect in monocytes/macrophages with an inability to produce GM-CSF and/or respond to GM-CSF. Thus, we investigated the cytokine responses to GM-CSF and LPS from peripheral blood monocytes and alveolar macrophages from patients with idiopathic PAP and healthy controls. Macrophage inflammatory protein-1-alpha (MIP) was measured from GM-CSF-stimulated cells and GM-CSF was measured from LPS-stimulated cells by ELISA. The MIP and GM-CSF production by monocytes and alveolar macrophages did not differ between PAP patients and healthy controls. Growth of the GM-CSF-dependent human myeloid cell line TF-1 was inhibited by serum from all patients studied (n = 10) and all patients had anti-GM-CSF antibody in their serum. The BAL from PAP patients had less detectable GM-CSF by ELISA than healthy controls (P = 0.05); in contrast, the inhibitory cytokine, interleukin-10 (IL-10), was increased in PAP compared to controls (P = 0.04). IL-10 is a potent inhibitor of LPS-stimulated GM-CSF production from healthy control alveolar macrophages. These studies are the first to demonstrate that circulating monocytes and alveolar macrophages from PAP patients are able to synthesize GM-CSF and respond to GM-CSF, suggesting no intrinsic abnormalities in GM-CSF signaling. In addition, these observations suggest that PAP in a subset of patients is the result of decreased availability of GM-CSF due to GM-CSF blocking activity and reduced GM-CSF production by IL-10.
    [Abstract] [Full Text] [Related] [New Search]