These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reaction of human myoglobin and H2O2. Involvement of a thiyl radical produced at cysteine 110.
    Author: Witting PK, Douglas DJ, Mauk AG.
    Journal: J Biol Chem; 2000 Jul 07; 275(27):20391-8. PubMed ID: 10779502.
    Abstract:
    The human myoglobin (Mb) sequence is similar to other mammalian Mb sequences, except for a unique cysteine at position 110. Reaction of wild-type recombinant human Mb, the C110A variant of human Mb, or horse heart Mb with H(2)O(2) (protein/H(2)O(2) = 1:1.2 mol/mol) resulted in formation of tryptophan peroxyl (Trp-OO( small middle dot)) and tyrosine phenoxyl radicals as detected by EPR spectroscopy at 77 K. For wild-type human Mb, a second radical (g approximately 2. 036) was detected after decay of Trp-OO( small middle dot) that was not observed for the C110A variant or horse heart Mb. When the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was included in the reaction mixture at protein/DMPO ratios </=1:10 mol/mol, a DMPO adduct exhibiting broad absorptions was detected. Hyperfine couplings of this radical indicated a DMPO-thiyl radical. Incubation of wild-type human Mb with thiol-blocking reagents prior to reaction with peroxide inhibited DMPO adduct formation, whereas at protein/DMPO ratios >/=1:25 mol/mol, DMPO-tyrosyl radical adducts were detected. Mass spectrometry of wild-type human Mb following reaction with H(2)O(2) demonstrated the formation of a homodimer (mass of 34,107 +/- 5 atomic mass units) sensitive to reducing conditions. The human Mb C110A variant afforded no dimer under identical conditions. Together, these data indicate that reaction of wild-type human Mb and H(2)O(2) differs from the corresponding reaction of other myoglobin species by formation of thiyl radicals that lead to a homodimer through intermolecular disulfide bond formation.
    [Abstract] [Full Text] [Related] [New Search]