These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of spontaneous beta 2-adrenergic activation rescues beta 1-adrenergic contractile response in cardiomyocytes overexpressing beta 2-adrenoceptor.
    Author: Zhang SJ, Cheng H, Zhou YY, Wang DJ, Zhu W, Ziman B, Spurgoen H, Lefkowitz RJ, Lakatta EG, Koch WJ, Xiao RP.
    Journal: J Biol Chem; 2000 Jul 14; 275(28):21773-9. PubMed ID: 10787424.
    Abstract:
    Cardiac-specific overexpression of the human beta(2)-adrenergic receptor (AR) in transgenic mice (TG4) enhances basal cardiac function due to ligand-independent spontaneous beta(2)-AR activation. However, agonist-mediated stimulation of either beta(1)-AR or beta(2)-AR fails to further enhance contractility in TG4 ventricular myocytes. Although the lack of beta(2)-AR response has been ascribed to an efficient coupling of the receptor to pertussis toxin-sensitive G(i) proteins in addition to G(s), the contractile response to beta(1)-AR stimulation by norepinephrine and an alpha(1)-adrenergic antagonist prazosin is not restored by pertussis toxin treatment despite a G(i) protein elevation of 1.7-fold in TG4 hearts. Since beta-adrenergic receptor kinase, betaARK1, activity remains unaltered, the unresponsiveness of beta(1)-AR is not caused by betaARK1-mediated receptor desensitization. In contrast, pre-incubation of cells with anti-adrenergic reagents such as muscarinic receptor agonist, carbachol (10(-5)m), or a beta(2)-AR inverse agonist, ICI 118,551 (5 x 10(-7)m), to abolish spontaneous beta(2)-AR signaling, both reduce the base-line cAMP and contractility and, surprisingly, restore the beta(1)-AR contractile response. The "rescued" contractile response is completely reversed by a beta(1)-AR antagonist, CGP 20712A. Furthermore, these results from the transgenic animals are corroborated by in vitro acute gene manipulation in cultured wild type adult mouse ventricular myocytes. Adenovirus-directed overexpression of the human beta(2)-AR results in elevated base-line cAMP and contraction associated with a marked attenuation of beta(1)-AR response; carbachol pretreatment fully revives the diminished beta(1)-AR contractile response. Thus, we conclude that constitutive beta(2)-AR activation induces a heterologous desensitization of beta(1)-ARs independent of betaARK1 and G(i) proteins; suppression of the constitutive beta(2)-AR signaling by either a beta(2)-AR inverse agonist or stimulation of the muscarinic receptor rescues the beta(1)-ARs from desensitization, permitting agonist-induced contractile response.
    [Abstract] [Full Text] [Related] [New Search]