These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydrolysis of triple-helical collagen peptide models by matrix metalloproteinases. Author: Lauer-Fields JL, Tuzinski KA, Shimokawa Ki, Nagase H, Fields GB. Journal: J Biol Chem; 2000 May 05; 275(18):13282-90. PubMed ID: 10788434. Abstract: The matrix metalloproteinase (MMP) family has been implicated in the process of a variety of diseases such as arthritis, atherosclerosis, and tumor cell metastasis. To study the mechanisms of MMP action on collagenous substrates, we have constructed homotrimeric triple-helical peptide (THP) models of the collagenase cleavage sites in types I and II collagen. The THPs incorporate either the alpha1(I)772-786 or the alpha1(II)772-783 sequence. The alpha1(I)772-786 and alpha1(II)772-783 THPs were hydrolyzed by MMP-1 at the Gly-Ile and Gly-Leu bonds, respectively, analogous to the bonds cleaved in corresponding native collagens. Thus, the THPs contained all necessary information to direct MMP-1 binding and proteolysis. Subsequent investigations using the alpha1(I)772-786 THP showed hydrolysis by MMP-2, MMP-13, and a COOH-terminal domain-deleted MMP-1 (MMP-1(Delta(243-450))) but not by MMP-3 or a COOH-terminal domain-deleted MMP-3 (MMP-3(Delta(248-460))). Kinetic analyses showed a k(cat)/K(m) value of 1,808 s(-1) m(-1) for MMP-1 hydrolysis of alpha1(I)772-786 THP, approximately 10-fold lower than for type I collagen. The effect is caused primarily by relative K(m) values. MMP-2 and MMP-13 cleaved the THP more rapidly than MMP-1, but MMP-2 cleavage occurred at distinct multiple sites. Comparison of MMP-1 and MMP-1(Delta(243-450)) hydrolysis of alpha1(I)772-786 THP showed that both can cleave a triple-helical substrate with a slightly higher K(m) value for MMP-1(Delta(243-450)). We propose that the COOH-terminal domain of MMPs is necessary for orienting whole, native collagen molecules but may not be necessary for binding to and cleaving a THP. This proposal is consistent with the large distance between the MMP-1 catalytic and COOH-terminal domains observed by three-dimensional structural analysis and supports previous suggestions that the features of the catalytic domain contribute significantly toward enzyme specificity.[Abstract] [Full Text] [Related] [New Search]