These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lymphoid cell dependence of eosinophil response to antigen. VI. The effect of selective removal of T or B lymphocytes on the capacity of primed spleen cells to adoptively transferred immunity to tetanus toxoid.
    Author: Ponzio NM, Speirs RS.
    Journal: Immunology; 1975 Feb; 28(2):243-51. PubMed ID: 1079015.
    Abstract:
    Spleens from mice primed with tetanus toxoid 30 days earlier contain memory cells capable of adoptively transferring secondary type cell-mediated (eosinophil) and humoral (antitoxin) responses to irradiated, reconstituted recipients. Spleen cells derived from 10-day-primed donors, on the other hand, possess the capacity after transfer to elicit secondary type eosinophil responses, but not anamnestic antitoxin responses. Treatment of 30-day-primed cells with anti-theta serum and C' prevented transfer of memory for both responses, whereas similar treatment with rabbit anti-mouse IgG (RAM-IgG) serum and C' only inhibited transfer of memory for the antitoxin response. Addition of non-primed spleen cells to antisera-treated primed cells failed to restore secondary type responses. Recombination of 30-day-primed anti-theta and RAM-IgG-treated cells re-established the capacity to transfer these responses. To determine whether the same T cells which mediate the eosiniphil response also act as helper cells in antitoxin production, antisera treated 10- and 30-day-primed cells were combined prior to transfer. Ten-day-primed T cells induced eisoniphil responses and also co-operated with 30-day-primed B cells to produce antitoxin. In contrast, 30-day-primed T cells elicited eisinophil responses, but were unable to induce antitoxin production when combined with anti-theta-treated 10-day-primed cells. These results indicate that B memory cells are not present in the spleens of the donor mice 10 days after priming, but T memory cells are present. It is concluded that primed T cells mediated both eosinophil and antitoxin responses, while B memory cells are involved only with antitoxin production. Following subcutaneous priming T memory cells are present in the spleen prior to B memory cells, and T memory cells which mediate the eosinophil response at 10 days after priming also augment the production of antitoxin by B memory cells.
    [Abstract] [Full Text] [Related] [New Search]