These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Direct observation of membrane tethers formed during neutrophil attachment to platelets or P-selectin under physiological flow. Author: Schmidtke DW, Diamond SL. Journal: J Cell Biol; 2000 May 01; 149(3):719-30. PubMed ID: 10791984. Abstract: Adhesion and subsequent aggregation between neutrophils and platelets is dependent upon the initial binding of P-selectin on activated platelets to P-selectin glycoprotein ligand 1 (PSGL-1) on the microvilli of neutrophils. High speed, high resolution videomicroscopy of flowing neutrophils interacting with spread platelets demonstrated that thin membrane tethers were pulled from neutrophils in 32 +/- 4% of the interactions. After capture by spread platelets, neutrophil membrane tethers (length of 5.9 +/- 4.1 microm, n = 63) were pulled at an average rate of 6-40 microm/s as the wall shear rate was increased from 100-250 s(-1). The average tether lifetime decreased significantly (P < 0.001) from 630 to 133 ms as the shear rate was increased from 100 s(-1) (F(bond) = 86 pN) to 250 s(-1) (F(bond) = 172 pN), which is consistent with P-selectin/PSGL-1 bond dynamics under stress. Tether formation was blocked by antibodies against P-selectin or PSGL-1, but not by anti-CD18 antibodies. During neutrophil rolling on P-selectin at 150 s(-1), thin membrane tethers were also pulled from the neutrophils. The characteristic jerking motion of the neutrophil coexisted with tether growth (8.9 +/- 8.8 microm long), whereas tether breakage (average lifetime of 3.79 +/- 3.32 s) caused an acute jump in the rolling velocity, proving multiple bonding in the cell surface and the tether surface contact area. Extremely long membrane tethers (>40 microm) were sometimes pulled, which detached in a flow-dependent mechanism of microparticle formation. Membrane tethers were also formed when neutrophils were perfused over platelet monolayers. These results are the first visualization of the often hypothesized tethers that shield the P-selectin/PSGL-1 bond from force loading to regulate neutrophil rolling during inflammation and thrombosis.[Abstract] [Full Text] [Related] [New Search]