These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inositol 1,4,5-trisphosphate directs Ca(2+) flow between mitochondria and the Endoplasmic/Sarcoplasmic reticulum: a role in regulating cardiac autonomic Ca(2+) spiking. Author: Jaconi M, Bony C, Richards SM, Terzic A, Arnaudeau S, Vassort G, Pucéat M. Journal: Mol Biol Cell; 2000 May; 11(5):1845-58. PubMed ID: 10793156. Abstract: The signaling role of the Ca(2+) releaser inositol 1,4, 5-trisphosphate (IP(3)) has been associated with diverse cell functions. Yet, the physiological significance of IP(3) in tissues that feature a ryanodine-sensitive sarcoplasmic reticulum has remained elusive. IP(3) generated by photolysis of caged IP(3) or by purinergic activation of phospholipase Cgamma slowed down or abolished autonomic Ca(2+) spiking in neonatal rat cardiomyocytes. Microinjection of heparin, blocking dominant-negative fusion protein, or anti-phospholipase Cgamma antibody prevented the IP(3)-mediated purinergic effect. IP(3) triggered a ryanodine- and caffeine-insensitive Ca(2+) release restricted to the perinuclear region. In cells loaded with Rhod2 or expressing a mitochondria-targeted cameleon and TMRM to monitor mitochondrial Ca(2+) and potential, IP(3) induced transient Ca(2+) loading and depolarization of the organelles. These mitochondrial changes were associated with Ca(2+) depletion of the sarcoplasmic reticulum and preceded the arrest of cellular Ca(2+) spiking. Thus, IP(3) acting within a restricted cellular region regulates the dynamic of calcium flow between mitochondria and the endoplasmic/sarcoplasmic reticulum. We have thus uncovered a novel role for IP(3) in excitable cells, the regulation of cardiac autonomic activity.[Abstract] [Full Text] [Related] [New Search]