These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of NF-kappa B by bradykinin through a Galpha(q)- and Gbeta gamma-dependent pathway that involves phosphoinositide 3-kinase and Akt.
    Author: Xie P, Browning DD, Hay N, Mackman N, Ye RD.
    Journal: J Biol Chem; 2000 Aug 11; 275(32):24907-14. PubMed ID: 10801799.
    Abstract:
    Recent work has suggested a role for the serine/threonine kinase Akt and IkappaB kinases (IKKs) in nuclear factor (NF)-kappaB activation. In this study, the involvement of these components in NF-kappaB activation through a G protein-coupled pathway was examined using transfected HeLa cells that express the B2-type bradykinin (BK) receptor. The function of IKK2, and to a lesser extent, IKK1, was suggested by BK-induced activation of their kinase activities and by the ability of their dominant negative mutants to inhibit BK-induced NF-kappaB activation. BK-induced NF-kappaB activation and IKK2 activity were markedly inhibited by RGS3T, a regulator of G protein signaling that inhibits Galpha(q), and by two Gbetagamma scavengers. Co-expression of Galpha(q) potentiated BK-induced NF-kappaB activation, whereas co-expression of either an activated Galpha(q)(Q209L) or Gbeta(1)gamma(2) induced IKK2 activity and NF-kappaB activation without BK stimulation. BK-induced NF-kappaB activation was partially blocked by LY294002 and by a dominant negative mutant of phosphoinositide 3-kinase (PI3K), suggesting that PI3K is a downstream effector of Galpha(q) and Gbeta(1)gamma(2) for NF-kappaB activation. Furthermore, BK could activate the PI3K downstream kinase Akt, whereas a catalytically inactive mutant of Akt inhibited BK-induced NF-kappaB activation. Taken together, these findings suggest that BK utilizes a signaling pathway that involves Galpha(q), Gbeta(1)gamma(2), PI3K, Akt, and IKK for NF-kappaB activation.
    [Abstract] [Full Text] [Related] [New Search]