These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Possible involvement of undissociated acid molecules in the acid response of the chorda tympani nerve of the rat. Author: Ogiso K, Shimizu Y, Watanabe K, Tonosaki K. Journal: J Neurophysiol; 2000 May; 83(5):2776-9. PubMed ID: 10805675. Abstract: To test whether undissociated acid is capable of exciting the chorda tympani nerves in rats, we have used buffered acid solutions as taste stimuli. These solutions were prepared by adding alkali to weak acids, such as acetic acid, so that the proportion of undissociated and dissociated acids was varied whereas keeping the total acid concentration constant. When acetic acid solutions, adjusted to wide ranges of pH by NaOH, were applied to the tongue, the response magnitude of the chorda tympani nerves was not varied systematically with pH changes. However, if the sodium effect was eliminated by amiloride or replacement of cation by potassium or Tris[hydroxymethyl]aminomethane; NH(2)C(CH(2)OH)(3) (Tris-base), the chorda tympani response was reduced systematically as pH increased. Similar results were obtained with citric acid and ascorbic acid. This pH-dependent change in taste nerve response to acid cannot be solely attributed to the proton gradient because the response magnitude induced by hydrogen itself, which was estimated from responses to strong acids, was much smaller than that by equi-pH acetic acid ( approximately 85%). Thus we cannot explain the pH-dependent responses of the chorda tympani nerves to weak acids unless effects of undissociated acid molecules are postulated. It is therefore concluded that undissociated acids in weak acid solutions can be a stimulant to taste receptor cells.[Abstract] [Full Text] [Related] [New Search]