These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression of a subset of the Arabidopsis Cys(2)/His(2)-type zinc-finger protein gene family under water stress. Author: Sakamoto H, Araki T, Meshi T, Iwabuchi M. Journal: Gene; 2000 May 02; 248(1-2):23-32. PubMed ID: 10806347. Abstract: The genes encoding Cys(2)/His(2)-type zinc-finger proteins constitute a large family in higher plants. To elucidate the functional roles of these types of protein, four different members of the gene family were cloned from Arabidopsis by PCR-aided methods. One was identical to the already reported gene STZ/ZAT10 and three were as yet unidentified genes, then designated AZF1 (Arabidopsis zinc-finger protein 1), AZF2 and AZF3. The AZF- and STZ-encoded proteins contain two canonical Cys(2)/His(2)-type zinc-finger motifs, separated by a long spacer. Three conserved regions, named B-box, L-box, and DNL-box, were also recognized outside the zinc-finger motifs, as in other members of the two-fingered Cys(2)/His(2)-type zinc-finger protein family. These four genes were positioned on the same branch of a phylogenetic tree constructed based on the zinc-finger motif sequences, suggesting their structural and functional relationship. RNA blot analysis showed that all four genes were mainly expressed in roots and at different levels in other organs. Expression of the four genes responded to water stress. High-salt treatment resulted in elevated levels of expression of all of these genes. Low-temperature treatment increased the expression levels of AZF1, AZF3, and STZ, but not AZF2. Only AZF2 expression was strongly induced by ABA treatment, where the time course of the induction was similar to that caused by high salinity. In situ localization showed that AZF2 mRNA accumulated in the elongation zone of the roots under the salt-stress condition. These results suggest that AZF1, AZF2, AZF3, and STZ are all involved in the water-stress response in an ABA-dependent or -independent pathway to regulate downstream genes.[Abstract] [Full Text] [Related] [New Search]