These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tissue responses of calcium phosphate cement: a study in dogs.
    Author: Yuan H, Li Y, de Bruijn JD, de Groot K, Zhang X.
    Journal: Biomaterials; 2000 Jun; 21(12):1283-90. PubMed ID: 10811310.
    Abstract:
    The in vivo properties of a new kind of calcium phosphate cement were investigated in this study. Calcium phosphate cement was implanted as paste into femoral bone and dorsal muscle of dogs for 3 and 6 months, and as prehardened form into thigh muscles of dogs for 1, 2 and 6 months. Histology was performed on thin un-decalcified sections. No foreign body reaction, no inflammation and no necrosis were found both in bony site and in muscles. There was no connective tissue layer between the cement and bone when cement paste was implanted in the bone. A creeping substitution of cement by bone, in which osteoclast-like cells resorbed the cement as if the cement is a part of bone and new bone was formed directly on the resorption line of calcium phosphate cement, was found. Bone formation was found histomorphologically in pores and deep rugged surface of cement samples (both paste and prehardened form) implanted in muscles of dogs. The induced bone was also identified with backscattered scanning electron microscopy (BSE) and by energy-dispersive X-ray micro-analysis (EDX). The results suggest that the calcium phosphate cement used in this study is biocompatible, resorbable in a manner of creeping substitution, osteoconductive and osteoinductive. It seems that an ideal bone substitute can be developed by using this type of calcium phosphate cement.
    [Abstract] [Full Text] [Related] [New Search]