These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of weight-bearing-responsive elements in the skeletal muscle sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1) gene. Author: Mitchell-Felton H, Hunter RB, Stevenson EJ, Kandarian SC. Journal: J Biol Chem; 2000 Jul 28; 275(30):23005-11. PubMed ID: 10811813. Abstract: The skeletal muscle sarco(endo)plasmic reticulum calcium ATPase (SERCA1) gene is transactivated as early as 2 days after the removal of weight-bearing (Peters, D. G., Mitchell-Felton, H., and Kandarian, S. C. (1999) Am. J. Physiol. 276, C1218-C1225), but the transcriptional mechanisms are elusive. Here, the rat SERCA1 5' flank and promoter region (-3636 to +172 base pairs) was comprehensively examined using in vivo somatic gene transfer into rat soleus muscles (n = 804) to identify region(s) that are both necessary and sufficient for sensitivity to weight-bearing. In all, 40 different SERCA1 reporter plasmids were constructed and tested. Several different regions of the SERCA1 5' flank were sufficient to confer a transcriptional response to 7 days of muscle unloading when placed upstream of a heterologous promoter. Two of these regions were analyzed further because they were necessary for the unloading response of -3636 to +172, as demonstrated using internal deletion constructs. Deletion analysis of these regions (-1373 to -1158 and -330 to +172) suggested that unloading responsiveness corresponded to CACC sites and E-boxes. Mutagenesis of cis-elements in the first region showed that a specific CACC box (-1262) was involved in SERCA1 transactivation and a nearby E-box (-1248) was also implicated. Constructs containing trimerized CACC sites and E-boxes showed that the presence of both elements is required to activate transcription. This is the first identification of specific cis-elements required for the regulation of a Ca(2+) handling gene by changes in muscle loading condition.[Abstract] [Full Text] [Related] [New Search]