These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Immunohistochemical study of the distribution of Ca(2+)/calmodulin-dependent protein kinase phosphatase in the rat central nervous system.
    Author: Nakamura Y, Kitani T, Okuno S, Otake K, Sato F, Fujisawa H.
    Journal: Brain Res Mol Brain Res; 2000 Apr 14; 77(1):76-94. PubMed ID: 10814834.
    Abstract:
    Distribution of Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaM-K Pase) which dephosphorylate multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaM-kinases) in the rat brain and spinal cord were examined immunohistochemically by using an antibody against this enzyme. CaM-K Pase was localized only in the cytoplasm as has been investigated in PC 12 cells, and was never observed in the nucleus. Immunostainability varied from cell group to cell group. Mitral cells in the olfactory bulb, pyramidal neurons in the fifth layer of the cerebral cortex, hippocampal and striatal interneurons, dorsal and ventral pallidal, entopeduncular, and the reticular part of the substantia nigra neurons were intensely immunolabeled. Motoneurons in all the cranial nerve nuclei and the anterior horn of the spinal cord also revealed intense immunolabeling. On the contrary, pyramidal neurons in the Ammon's horn of the hippocampal formation, granule cells in the olfactory bulb, dentate gyrus and cerebellar cortex, Purkinje cells, neurons in the medial habenular nucleus and the inferior olivary nucleus have not shown immunoreactivity. Axons in the white matter or nerve root of the cranial nerve nuclei were immunolabeled. Glial cells in the white matter also showed immunostaining. Because the substrate of CaM-K Pase is multifunctional CaM-kinase II, I and IV, localization of each CaM-kinase was compared with that of CaM-K Pase. The distribution of CaM-K Pase and these CaM-kinases was found to overlap in various regions in the brain and spinal cord. It was concluded, therefore, that CaM-K Pase could regulate the activity of these CaM-kinases by dephosphorylation, when they existed together in neurons.
    [Abstract] [Full Text] [Related] [New Search]