These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Increased translation efficiency and antizyme-dependent stabilization of ornithine decarboxylase in amino acid-supplemented human colon adenocarcinoma cells, Caco-2. Author: Chabanon H, Persson L, Wallace HM, Ferrara M, Brachet P. Journal: Biochem J; 2000 Jun 01; 348 Pt 2(Pt 2):401-8. PubMed ID: 10816435. Abstract: The mechanisms of the response of ornithine decarboxylase(ODC), the rate-limiting enzyme in polyamine biosynthesis, to amino acid supplementation were studied in the human colon adenocarcinoma cell line, Caco-2. Supplementation of serum-deprived, subconfluent Caco-2 cells with any one of a series of amino acids (10 mM) resultedin increased ODC activity, reaching a maximum of approx. 12.5-fold after approx. 4 h, over control cells either not supplemented or supplemented with iso-osmolar D-mannitol. Glycine, L-asparagine and L-serine, as well as their D-enantiomers, were the strongest effectors and acted in a concentration-dependent manner; millimolar concentrations of most of these amino acids being sufficient to significantly increase ODC activity. In contrast, supplementation with D-methionine, L-lysine, L-aspartate or L-glutamate had little or no effect on ODC activity, whereas supplemental L-methionine, L-arginine, L-ornithine or L-cysteine was inhibitory. Polyamine assays showed that the putrescine content of cells varied in accordance with the changes in ODC activity. Western-blot and Northern-blot analyses revealed specifically increased levels of ODC protein but not mRNA,respectively, in response to supplementation with an ODC-inducing amino acid. Suppression of the increase in cycloheximide-treated cellsconfirmed a requirement for protein synthesis. Pulse-labelling of cellswith [(35)S]methionine showed a 3-fold increase in thesynthesis of ODC protein after 4 h of supplementation with glycineor L-serine. Supplemental glycine also augmented, reversibly, the half-life of ODC by almost 4-fold and simultaneously decreased the activity of putrescine-induced free antizyme. These results suggest that translational, but not transcriptional, regulation of ODC takes part in ODC induction by amino acids in Caco-2 cells. However, it also appears to occur in concert with decreased enzyme in activation and/or degradation.[Abstract] [Full Text] [Related] [New Search]