These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Single amino acid substitutions in kappa-conotoxin PVIIA disrupt interaction with the shaker K+ channel. Author: Jacobsen RB, Koch ED, Lange-Malecki B, Stocker M, Verhey J, Van Wagoner RM, Vyazovkina A, Olivera BM, Terlau H. Journal: J Biol Chem; 2000 Aug 11; 275(32):24639-44. PubMed ID: 10818087. Abstract: kappa-Conotoxin PVIIA (kappa-PVIIA), a 27-amino acid peptide with three disulfide cross-links, isolated from the venom of Conus purpurascens, is the first conopeptide shown to inhibit the Shaker K(+) channel (Terlau, H., Shon, K., Grilley, M., Stocker, M., Stühmer, W., and Olivera, B. M. (1996) Nature 381, 148-151). Recently, two groups independently determined the solution structure for kappa-PVIIA using NMR; although the structures reported were similar, two mutually exclusive models for the interaction of the peptide with the Shaker channel were proposed. We carried out a structure/function analysis of kappa-PVIIA, with alanine substitutions for all amino acids postulated to be key residues by both groups. Our data are consistent with the critical dyad model developed by Ménez and co-workers (Dauplais, M., Lecoq, A., Song, J. , Cotton, J., Jamin, N., Gilquin, B., Roumestand, C., Vita, C., de Medeiros, C., Rowan, E. G., Harvey, A. L., and Ménez, A. (1997) J. Biol. Chem. 272, 4802-4809) for polypeptide antagonists of K(+) channels. In the case of kappa-PVIIA, Lys(7) and Phe(9) are essential for activity as predicted by Savarin et al. (Savarin, P., Guenneugues, M., Gilquin, B., Lamthanh, H., Gasparini, S., Zinn-Justin, S., and Ménez, A. (1998) Biochemistry 37, 5407-5416); these workers also correctly predicted an important role for Lys(25). Thus, although kappa-conotoxin PVIIA has no obvious sequence homology to polypeptide toxins from other venomous animals that interact with voltage-gated K(+) channels, there may be convergent functional features in diverse K(+) channel polypeptide antagonists.[Abstract] [Full Text] [Related] [New Search]