These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of the denticity of ligand systems on the in vitro and in vivo behavior of (99m)Tc(I)-tricarbonyl complexes: a hint for the future functionalization of biomolecules. Author: Schibli R, La Bella R, Alberto R, Garcia-Garayoa E, Ortner K, Abram U, Schubiger PA. Journal: Bioconjug Chem; 2000; 11(3):345-51. PubMed ID: 10821650. Abstract: Functionalization of biologically relevant molecules for the labeling with the novel fac-[(99m)Tc(OH(2))(3)(CO)(3)](+) precursor has gained considerable attention recently. Therefore, we tested seven different tridentate (histidine L(1)(), iminodiacetic acid L(2)(), N-2-picolylamineacetic acid L(3)(), N, N-2-picolylaminediacetic acid L(4)()) and bidentate (histamine L(5)(), 2-picolinic acid L(6)(), 2,4-dipicolinic acid L(7)()) ligand systems, with the potential to be bifunctionalized and attached to a biomolecule. The ligands allowed mild radiolabeling conditions with fac-[(99m)Tc(OH(2))(3)(CO)(3)](+) (30 min, 75 degrees C). The ligand concentrations necessary to obtain yields of >95% of the corresponding organometallic complexes 1-7 ranged from 10(-)(6) to 10(-)(4) M. Complexes of the general formula "fac-[(99m)TcL(CO)(3)]" (L = tridentate ligand) and "fac-[(99m)Tc(OH(2))L'(CO)(3)]" (L' = bidentate ligand), respectively, were produced. Challenge studies with cysteine and histidine revealed significant displacement of the ligands in complexes 5-7 but only little exchange with complexes 1-4 after 24 h at 37 degrees C in PBS buffer. However, no decomposition to (99m)TcO(4)(-) was observed under these conditions. All complexes showed a hydrophilic character (log P(o/w) values ranging from -2.12 to 0.32). Time-dependent FPLC analyses of compounds 1-7 incubated in human plasma at 37 degrees C showed again no decomposition to (99m)TcO(4)(-) after 24 h at 37 degrees C. However, the complexes with bidentate ligands (5-7) became almost completely protein bound after 60 min, whereas the complexes with tridentate coordinated ligands (1-4) showed no reaction with serum proteins. The compounds were tested for their in vivo stability and the biodistribution characteristics in BALB/c mice. The complexes with tridentate coordinated ligand systems (1-4) revealed generally a good and fast clearance from all organs and tissues. On the other hand, the complexes with only bidentate coordinated ligands (5-7) showed a significantly higher retention of activity in the liver, the kidneys, and the blood pool. Detailed radiometric analyses of murine plasma samples, 30 min p.i. of complex fac-[(99m)TcL(1)(CO)(3)], 1, revealed almost no reaction of the radioactive complex with the plasma proteins. By contrast, in plasma samples of mice, which were injected with complex fac-[(99m)Tc(OH(2))L(5)(CO)(3)](+), 5, the entire radioactivity coeluded with the proteins. On the basis of these in vitro and in vivo experiments, it appears that functionalization of biomolecules with tridentate-chelating ligand systems is preferable for the labeling with fac-[(99m)Tc(OH(2))(3)(CO)(3)](+), since this will presumably result in radioactive bioconjugates with better pharmacokinetic profiles.[Abstract] [Full Text] [Related] [New Search]