These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Somatostatin potentiates NMDA receptor function via activation of InsP(3) receptors and PKC leading to removal of the Mg(2+) block without depolarization.
    Author: Pittaluga A, Bonfanti A, Raiteri M.
    Journal: Br J Pharmacol; 2000 Jun; 130(3):557-66. PubMed ID: 10821783.
    Abstract:
    N-methyl-D-aspartate (NMDA) receptors exist on noradrenergic axon terminals and mediate enhancement of noradrenaline (NA) release. We here investigated modulation by somatostatin (SRIF, somatotropin release inhibiting factor) of the NMDA-induced release of NA using superfused hippocampal synaptosomes. The NMDA response was increased by SRIF-28 and SRIF-14, but not SRIF-28((1 - 14)), whereas the release of [(3)H]-NA elicited by alpha-amino-3-hydroxy-5-methylisoxazide-4-propionic acid (AMPA) was unaffected. SRIF-14 did not mimic glycine at the NMDA receptor but activated SRIF receptors sited on noradrenergic terminals. The SRIF-14 effect was blocked by pertussis toxin but mimicked by mastoparan, a G-protein activator. BIM-23056, but not Cyanamid 154806, antagonized the SRIF-14 effect. This effect was mimicked by L362855, a partial agonist at the sst(5) subtype, but not by the new selective sst(1) - sst(4) receptor agonists L797591, L779976, L796778 and L803087. Protein kinase C (PKC) inhibitors (H7, staurosporine, GF 209103X, cheleritrine and sphingosine) prevented the SRIF-14 effect, while phorbol 12-myristate 13-acetate enhanced the NMDA response. SRIF-14 permitted NMDA receptor activation in the presence of 1.2 mM Mg(2+) ions, both in hippocampal synaptosomes and slices. Blockade of inositol-1,4,5-trisphosphate (InsP(3)) receptors with heparin abolished the effect of SRIF-14. It is concluded that SRIF receptors, possibly of the sst(5) subtype, can exert a permissive role on NMDA receptors colocalized on hippocampal noradrenergic terminals: activation of sst(5) receptors is coupled to pertussis toxin-sensitive G proteins enhancing phosphoinositide metabolism with activation of InsP(3) receptors and PKC; NMDA receptor subunits might be phosphorylated with consequent removal of the Mg(2+) block in absence of depolarization.
    [Abstract] [Full Text] [Related] [New Search]