These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: D609-phosphatidylcholine-specific phospholipase C inhibitor attenuates thapsigargin-induced sodium influx in human lymphocytes.
    Author: Nofer JR, Junker R, Seedorf U, Assmann G, Zidek W, Tepel M.
    Journal: Cell Signal; 2000 May; 12(5):289-96. PubMed ID: 10822169.
    Abstract:
    Previously, we reported that the phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor tricyclodecan-9-yl xanthogenate (D609) potentiates thapsigargin-induced Ca(2+) influx in human lymphocytes. In the present study we examined the effect of D609 on the thapsigargin-induced Na(+) entry. We found that the early phase of the thapsigargin-induced increase in the intracellular Na(+) concentration (approx. 1-2 min after stimulation) was attenuated after preincubation of lymphocytes with D609. By contrast, thapsigargin-induced Na(+) influx was not affected in the presence butan-1-ol, which inhibits phosphatidylcholine-specific phospholipase D (PC-PLD). The thapsigargin-induced Na(+) influx could be mimicked by PC-PLC exogenously added to the lymphocyte suspension, whereas addition of PC-PLD had no effect. In addition, thapsigargin stimulated formation of the physiological PC-PLC products, diacylglycerol. Cell-permeable diacylglycerol analogue, dioctanoyl-glycerol (DOG), produced time- and concentration-dependent increase in the intracellular Na(+) concentration. Both thapsigargin- and DOG-induced Na(+) increases were not affected in the presence of Na(+)/H(+) antiport inhibitor, HOE609, or Na(+)/Ca(2+) antiport inhibitor, dimethylthiourea, as well as in the presence of Co(2+) and Ni(2+), which block store-operated Ca(2+) entry. By contrast, markedly reduced thapsigargin- and DOG-induced Na(+) influx were noted in the presence of flufenamic acid, which blocks the non-selective cation current (I(CRANC)). In conclusion, our results suggest that diacylglycerol released due to the PC-PLC activation contributes to the thapsigargin-induced Na(+) entry.
    [Abstract] [Full Text] [Related] [New Search]