These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Screening of fungal species for fumonisin production and fumonisin-like disruption of sphingolipid biosynthesis. Author: Norred WP, Bacon CW, Riley RT, Voss KA, Meredith FI. Journal: Mycopathologia; 1999; 146(2):91-8. PubMed ID: 10822508. Abstract: Fumonisins are mycotoxins produced by several species of Fusaria. They are found on corn and in corn-based products, can cause fatal illnesses in some animals and are suspected human esophageal carcinogens. Fumonisins are believed to cause toxicity by blocking ceramide synthase, a key enzyme in sphingolipid biochemistry which converts sphinganine (or sphingosine) and fatty acyl CoA to ceramide. Relatively few fungal species have been evaluated for their ability to produce fumonisins. Fewer have been studied to determine if they produce ceramide synthase inhibitors, whether fumonisin-like structures or not, therefore potentially having toxicity similar to fumonisins. We analyzed corn cultures of 49 isolates representing 32 diverse species of fungi for their ability to produce fumonisins. We also evaluated the culture extracts for ceramide synthase activity. Only cultures prepared with species reported previously to produce fumonisins--Fusarium moniliforme and F. proliferatum--tested positive for fumonisins. Extracts of these cultures inhibited ceramide synthase, as expected. None of the other fungal isolates we examined produced fumonisins or other compounds capable of inhibiting ceramide synthase. Although the fungi we selected for these studies represent only a few of the thousands of species that exist, they share the commonality that they are frequently associated with cereal grasses, including corn, either as pathogens or as asymptomatic endophytes. Thus, these results should be encouraging to those attempting to find ways to genetically manipulate fumonisin-producing fungi, to make corn more resistant, or to develop biocontrol measures because it appears that only a relatively few fungal contaminants of corn can produce fumonisins.[Abstract] [Full Text] [Related] [New Search]