These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simultaneous optical mapping of transmembrane potential and intracellular calcium in myocyte cultures.
    Author: Fast VG, Ideker RE.
    Journal: J Cardiovasc Electrophysiol; 2000 May; 11(5):547-56. PubMed ID: 10826934.
    Abstract:
    INTRODUCTION: Fast spatially resolved measurements of transmembrane potential (Vm) and intracellular calcium (Ca(i)2+) are important for studying mechanisms of arrhythmias and defibrillation. The goals of this work were (1) to develop an optical technique for simultaneous multisite optical recordings of Vm and Ca(i)2+, and (2) to determine the relationship between Vm and Ca(i)2+ during normal impulse propagation in myocyte cultures. METHODS AND RESULTS: Monolayers of neonatal rat myocytes were stained with fluorescent dye RH-237 (Vm) and Fluo-3AM (Ca(i)2+). Both dyes were excited at the same wavelength range. The emitted fluorescence was optically separated into components corresponding to changes in Vm and Ca(i)2+ and measured using two 16 x 16 photodiode arrays at a spatial resolution of up to 27.5 microm per diode and sampling rate of 2.5 kHz. The optical setup was adjusted so that there was no optical cross-talk between the two types of measurements, which was validated in experiments involving staining with either RH-237 or Fluo-3. The amplitude of Fluo-3 signals rapidly decreased during experiments due to dye leakage. Dye leakage was substantially reduced by application of 1 mM probenecid, a blocker of organic anion transport, which had no effect on action potential duration and only minor effect on conduction velocity. In double-stained preparations, during regular pacing Ca(i)2+ transients had a rise time of 14.2 +/- 2 msec, and they followed Vm upstrokes with a delay of 5.3 +/- 1 msec (n = 9). Durations of Vm and Ca(i)2+ transients determined at 50% level of signal recovery were 54.6 +/- 10 msec and 136 +/- 8 msec, respectively. Application of 2 microM nifedipine reduced the amplitude and duration of Ca(i)2+ transients without significantly affecting conduction velocity. CONCLUSION: The results demonstrate feasibility of simultaneous optical recordings of Vm and Ca(i)2+ transients with high spatial and temporal resolution.
    [Abstract] [Full Text] [Related] [New Search]