These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Facial motor neuron regeneration induces a unique spatial and temporal pattern of myristoylated alanine-rich C kinase substrate expression.
    Author: McNamara RK, Jiang Y, Streit WJ, Lenox RH.
    Journal: Neuroscience; 2000; 97(3):581-9. PubMed ID: 10828540.
    Abstract:
    We have previously shown that the myristoylated alanine-rich C kinase substrate, a primary protein kinase C substrate in brain that binds and cross-links filamentous actin, is enriched in neuronal growth cones and is developmentally regulated in brain. Here we examined myristoylated alanine-rich C kinase substrate expression in the facial motor nucleus during axonal regeneration following facial nerve axotomy or facial nerve resection lesions, which impede regeneration, or following motor neuron degeneration induced by the retrograde neurotoxin ricin. For comparative purposes, the protein kinase C substrates myristoylated alanine-rich C kinase substrate-like protein and growth-associated protein-43 were examined in parallel. Myristoylated alanine-rich C kinase substrate messenger RNA exhibited a robust increase in both neurons and non-neuronal cells in the facial motor nucleus beginning four days after axotomy, peaked at seven days (2.5-fold), and declined back to baseline levels by 40 days. Myristoylated alanine-rich C kinase substrate protein similarly exhibited a twofold elevation in the facial motor nucleus determined four and 14 days post-axotomy. Following nerve resection, myristoylated alanine-rich C kinase substrate messenger RNA levels increased at seven days and returned to baseline levels by 40 days. Unlike myristoylated alanine-rich C kinase substrate messenger RNA, myristoylated alanine-rich C kinase substrate-like messenger RNA levels did not increase in the facial motor nucleus at any time point following nerve axotomy or resection, whereas growth-associated protein-43 messenger RNA exhibited a rapid (one day) and prolonged (40 days) elevation in facial motor nucleus neurons following either nerve axotomy or resection. Ricin-induced degeneration of facial motor neurons elevated myristoylated alanine-rich C kinase substrate and myristoylated alanine-rich C kinase substrate-like messenger RNAs in both microglia (lectin-positive) and astrocytes (glial fibrillary acidic protein-positive).Collectively, these data demonstrate that myristoylated alanine-rich C kinase substrate exhibits a unique expression profile in the facial motor nucleus following facial nerve lesions, and it is proposed that myristoylated alanine-rich C kinase substrate may serve to mediate actin-membrane cytoskeletal plasticity in both neurons and glial cells in response to protein kinaseC-mediated signaling during nerve regeneration and degeneration.
    [Abstract] [Full Text] [Related] [New Search]