These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hormonal diagnosis of 21-hydroxylase deficiency in plasma and urine of neonates using benchtop gas chromatography-mass spectrometry.
    Author: Wudy SA, Hartmann M, Homoki J.
    Journal: J Endocrinol; 2000 Jun; 165(3):679-83. PubMed ID: 10828852.
    Abstract:
    We aimed at measuring the first plasma concentrations of 17-hydroxyprogesterone (17OH-P) determined by benchtop isotope dilution/gas chromatography-mass spectrometry (ID/GC-MS) in term neonates with or without 21-hydroxylase deficiency. Plasma samples from normal cord blood specimens (n=30), unaffected neonates (n=38) and neonatal patients with classical 21-hydroxylase deficiency (eight salt-wasters, three simple virilizers) were analyzed. Steroid profiling of random urinary specimens by GC-MS served as a confirmatory test for 21-hydroxylase deficiency. 17OH-P (nmol/l) in cord blood plasma lay between 11.66 and 75.92 (median 24.74). It declined shortly after birth. In the first 8 days of life, the time that screening for 21-hydroxylase deficiency is performed, 17OH-P ranged between undetected levels and an upper limit of 22.87 (median 4.11). Thereafter (days 9-28) its concentrations lay between 2.18 and 20.30 (median 6.22). Except one simple virilizer, all other patients with 21-hydroxylase deficiency had clearly elevated plasma 17OH-P at the time that screening for 21-hydroxylase deficiency would be performed. We suggest ID/GC-MS, which provides the highest specificity in steroid analysis, for checking suspicious concentrations of 17OH-P in neonates and underscore the potential of urinary steroid profiling by GC-MS as a rapid, non-invasive and non-selective confirmatory test for congenital adrenal hyperplasia.
    [Abstract] [Full Text] [Related] [New Search]