These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DNA strand transfer catalyzed by vaccinia topoisomerase: peroxidolysis and hydroxylaminolysis of the covalent protein-DNA intermediate. Author: Krogh BO, Shuman S. Journal: Biochemistry; 2000 May 30; 39(21):6422-32. PubMed ID: 10828956. Abstract: Vaccinia topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at sites containing the sequence 5'-CCCTT downward arrow. The covalently bound topoisomerase can religate the CCCTT strand to a 5'-OH-terminated polynucleotide or else transfer the strand to a non-DNA nucleophile such a water or glycerol. Here, we report that vaccinia topoisomerase also catalyzes strand transfer to hydrogen peroxide. The observed alkaline pH-dependence of peroxidolysis is consistent with enzyme-mediated attack by peroxide anion on the covalent intermediate. The reaction displays apparent first-order kinetics. From a double-reciprocal plot of k(obs) versus [H(2)O(2)] at pH 10, we determined a rate constant for peroxidolysis of 6.3 x 10(-)(3) s(-)(1). This rate is slower by a factor of 200 than the rate of topoisomerase-catalyzed strand transfer to a perfectly aligned 5'-OH DNA strand but is comparable to the rate of DNA strand transfer across a 1-nucleotide gap. Strand transfer to 2% hydrogen peroxide is 300 times faster than strand transfer to 20% glycerol and approximately 2000 times faster than topoisomerase-catalyzed hydrolysis of the covalent intermediate. Hydroxylamine is also an effective nucleophile in topoisomerase-mediated strand transfer (k(obs) = 6.4 x 10(-)(4) s(-)(1)). The rates of the peroxidolysis, hydroxylaminolysis, glycerololysis, and hydrolysis reactions catalyzed by the mutant enzyme H265A were reduced by factors of 100-700, in accordance with the 100- to 400-fold rate decrements in DNA cleavage and religation by H265A. We surmise that vaccinia topoisomerase catalyzes strand transfer to DNA and non-DNA nucleophiles via a common reaction pathway in which His-265 stabilizes the scissile phosphate in the transition state rather than acting as a general acid or base.[Abstract] [Full Text] [Related] [New Search]