These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Npt2 gene disruption confers resistance to the inhibitory action of parathyroid hormone on renal sodium-phosphate cotransport.
    Author: Zhao N, Tenenhouse HS.
    Journal: Endocrinology; 2000 Jun; 141(6):2159-65. PubMed ID: 10830304.
    Abstract:
    PTH inhibition of renal sodium-phosphate (Na-Pi) cotransport is associated with the endocytic retrieval of the type II Na-Pi cotransporter, Npt2, from the renal brush border membrane into the late endosomal/lysosomal compartment. The aim of the present study was to determine whether mice homozygous for the disrupted Npt2 gene (Npt2-/-) exhibit decreased renal Pi reabsorption in response to PTH. We demonstrate that PTH has no effect on the serum Pi concentration, fractional excretion of Pi, or Na-dependent Pi transport in renal brush border membrane vesicles in Npt2-/- mice. In contrast, PTH elicits a fall in the serum Pi concentration, an increase in urinary Pi excretion, a decrease in brush border membrane Na-Pi cotransport, and a corresponding reduction in the relative abundance of Npt2 protein in wild-type mice (Npt2+/+). Both Npt2-/- and Npt2+/+ mice exhibit a significant rise in the urinary cAMP/creatinine ratio in response to PTH, indicating that generalized resistance to PTH cannot account for the absence of the PTH response in Npt2-/- mice. In addition, we demonstrate that Pi-depleted normal mice respond to PTH with a decrease in renal brush border membrane Na-Pi cotransport and Npt2 protein, indicating that Pi deficiency per se does not account for PTH resistance in Npt2-/- mice. Taken together, our data provide compelling evidence that Npt2 gene expression is crucial for PTH effects on renal Pi handling.
    [Abstract] [Full Text] [Related] [New Search]