These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Production and characterization of biologically active human GM-CSF secreted by genetically modified plant cells.
    Author: James EA, Wang C, Wang Z, Reeves R, Shin JH, Magnuson NS, Lee JM.
    Journal: Protein Expr Purif; 2000 Jun; 19(1):131-8. PubMed ID: 10833400.
    Abstract:
    Human granulocyte-macrophage colony-stimulating factor (GM-CSF), a hemopoietic growth factor, was produced and secreted from tobacco cell suspensions. The GM-CSF cDNA was carried by a binary vector under the control of the CaMV 35S promoter and the T7 terminator. In addition, a 5'-nontranslated region from the tobacco etch virus (TEV leader sequence) was fused to the N-terminal end of the GM-CSF transgene. For ease of purification, a 6-His tag was added to the 3' end of the GM-CSF cDNA. Addition of the TEV leader sequence increased protein production more than twofold compared to non-TEV controls. Initial batch cultivation studies indicated a maximum of 250 microg/L extracellular and 150 microg/L intracellular GM-CSF. Western blot analysis detected multiple peptides with masses from 14 to 30 kDa in the extracellular medium. The plant-produced GM-CSF was biologically active and could be bound to a nickel affinity matrix, indicating that both the receptor-binding region and the 6-His tag were functional. The batch production of GM-CSF was compared with the production of other recombinant proteins secreted by transformed tobacco cells. The recovery of secreted GM-CSF was increased by the addition of stabilizing proteins and by increasing salt in the growth medium to physiological levels.
    [Abstract] [Full Text] [Related] [New Search]