These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of partial liquid ventilation with perfluorodecalin in the juvenile rabbit lung after saline injury.
    Author: Al-Rahmani A, Awad K, Miller TF, Wolfson MR, Shaffer TH.
    Journal: Crit Care Med; 2000 May; 28(5):1459-64. PubMed ID: 10834696.
    Abstract:
    OBJECTIVE: To evaluate the feasibility of using the perfluorochemical, perfluorodecalin, for partial liquid ventilation (PLV) with respect to gas exchange and lung mechanics in normal and saline-injured lungs of juvenile rabbits. DESIGN: Experimental, prospective, randomized, controlled study. SETTING: Physiology laboratory at a university medical school. SUBJECTS: Seventeen juvenile rabbits assigned to three groups. INTERVENTIONS: The conventional mechanical ventilation (CMV)-injury group (n = 5) was treated with CMV after establishing a lung injury; the PLV-injury group (n = 6) was treated with PLV after lung injury; and the PLV-healthy group (n = 6) was supported with PLV without lung injury. Lung injury was created by repeated saline lung lavages. PLV-treated animals received a single dose of intratracheal perfluorodecalin at a volume equal to the measured preinjury gas functional residual capacity (functional residual capacity = 18.6+/-1.5 [SEM] mL/kg). MEASUREMENTS AND MAIN RESULTS: Sequential measurements of total respiratory compliance and arterial blood chemistries were performed in all groups. Oxygenation index (OI) and ventilation efficiency index were calculated. After lung injury, there was a significant (p < .05) decrease in PaO2, total respiratory compliance, and ventilation efficiency index and an increase in OI and PaCO2. In the PLV-injury group, PLV significantly (p < .05) improved PaO2 (+60%) and OI (-33%) over time. Compliance was significantly (p < .05) higher (90%) than in the CMV-injury group over time. CONCLUSIONS: These results demonstrate that PLV with perfluorodecalin improved oxygenation and increased respiratory compliance in the saline-injured rabbit lung. In addition, similar to the effects of several other perfluorochemical liquids on normal lungs, pulmonary administration of perfluorodecalin was associated with a small impairment in gas exchange and a significant decrease in lung compliance in the juvenile rabbit model.
    [Abstract] [Full Text] [Related] [New Search]