These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Two classes of sir3 mutants enhance the sir1 mutant mating defect and abolish telomeric silencing in Saccharomyces cerevisiae. Author: Stone EM, Reifsnyder C, McVey M, Gazo B, Pillus L. Journal: Genetics; 2000 Jun; 155(2):509-22. PubMed ID: 10835377. Abstract: Silent information regulators, or Sir proteins, play distinct roles in chromatin-mediated transcriptional control at the silent mating-type loci, telomeres, and within the rDNA repeats of Saccharomyces cerevisiae. An unusual collection of sir3 mutant alleles was identified in a genetic screen for enhancers of the sir1 mutant mating-defective phenotype. These sir3-eso mutants, like the sir1 mutant, exhibit little or no mating defects alone, but the sir1 sir3-eso double mutants are essentially nonmating. All of the sir3-eso mutants are defective in telomeric silencing. In some mutants, this phenotype is suppressed by tethering Sir1p to telomeres; other mutants are dominant for mating and telomeric silencing defects. Additionally, several sir3-eso mutants are nonmating in combination with the nat1 N-terminal acetyltransferase mutant. The temperature-sensitive allele sir3-8 has an eso phenotype at permissive temperature, yet acts as a null allele at restrictive temperature due to loss of sir3-8 protein. Sequence analysis showed that eight of the nine sir3-eso alleles have mutations within the N-terminal region that is highly similar to the DNA replication initiation protein Orc1p. Together, these data reveal modular domains for Sir3p and further define its function in silencing chromatin.[Abstract] [Full Text] [Related] [New Search]