These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: N-acetyltransferase-dependent activation of 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine: formation of 2-amino-1-methyl-6-(5-hydroxy)phenylimidazo [4,5-b]pyridine, a possible biomarker for the reactive dose of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Author: Frandsen H, Alexander J. Journal: Carcinogenesis; 2000 Jun; 21(6):1197-203. PubMed ID: 10837010. Abstract: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a mutagenic and carcinogenic heterocyclic amine formed during ordinary cooking. PhIP is metabolically activated to the ultimate mutagenic metabolite by CYP P450-mediated N-hydroxylation followed by phase II esterification. Incubation of N-hydroxy-PhIP (N-OH-PhIP) with cytosol, acetyl coenzyme A (AcCoA) and 2'-deoxyguanosine for 24 h resulted in the formation of three different adducts:N(2)-(deoxyguanosin-8-yl)-PhIP, N(2)-(guanosin-8-yl)-PhIP and PhIP-xanthine. One additional product, 5-hydroxy-PhIP (5-OH-PhIP), was also identified in the incubation mixtures. 5-hydroxy-PhIP is formed as a degradation product of conjugates formed from N-acetoxy-PhIP and protein, glutathione or buffer constituents. A similar spectrum of products was obtained using 3'-phosphoadenosine-5'-phosphosulfate (PAPS) instead of acetyl CoA. Addition of glutathione (3 mM) to the incubation mixture resulted in a 50% reduction in both adducts and 5-hydroxy-PhIP formation in liver cytosol. The main product detected was PhIP, suggesting glutathione-dependent reduction of the N-acetoxy-PhIP. Addition of glutathione to incubation mixtures from the other cytosolic preparations had less dramatic effects. In addition, increasing the amount of N-OH-PhIP in the incubation mixture resulted in proportional increased amounts of total adducts and 5-OH-PhIP. Incubation of rat and human S9 with PhIP resulted in the formation of only traces of 5-OH-PhIP. Fortification with AcCoA clearly increased the formation of 5-OH-PhIP. Addition of the CYP 450 1A2 inhibitor, furafylline, completely inhibited the formation of 5-OH-PhIP in incubations with human S9. These results indicate that both PhIP adducts and 5-OH-PhIP are formed by similar routes of activation of N-OH-PhIP. 5-OH-PhIP may therefore serve as a biomarker for the formation of the ultimate mutagenic metabolite of PhIP. A rat dosed orally with PhIP excreted 1% of the dose as 5-OH-PhIP in the urine at 24 h and 0.05 and 0.01% at 48 and 72 h, respectively. This shows that 5-OH-PhIP is also formed in vivo and indicates the possible use of 5-OH-PhIP as a urinary biomarker.[Abstract] [Full Text] [Related] [New Search]