These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Skeletal muscle gene transfer: regeneration-associated deregulation of fast troponin I fiber type specificity.
    Author: Hallauer PL, Karpati G, Hastings KE.
    Journal: Am J Physiol Cell Physiol; 2000 Jun; 278(6):C1266-74. PubMed ID: 10837355.
    Abstract:
    Direct gene transfer into skeletal muscle in vivo presents a convenient experimental approach for studies of adult muscle gene regulatory mechanisms, including fast vs. slow fiber type specificity. Previous studies have reported preferential expression of fast myosin heavy chain and slow myosin light chain and troponin I (TnIslow) gene constructs in muscles enriched in the appropriate fiber type. We now report a troponin I fast (TnIfast) direct gene transfer study. We injected into the mouse soleus muscle plasmid DNA or recombinant adenovirus carrying a TnIfast/ beta-galactosidase (beta-gal) reporter construct that had previously been shown to be expressed specifically in fast fibers in transgenic mice. Surprisingly, microscopic histochemical analysis 1 and 4 wk postinjection showed similar TnIfast/beta-gal expression in fast and slow fibers. A low but significant level of muscle fiber segmental regeneration was evident in muscles 1 wk postinjection, and TnIfast/beta-gal expression was preferentially targeted to regenerating fiber segments. This finding can explain why TnIfast constructs are deregulated with regard to fiber type specificity, whereas the myosin constructs previously studied are not. The involvement of regenerating fiber segments in transduction by plasmid DNA and recombinant adenoviruses injected into intact normal adult muscle is an unanticipated factor that should be taken into account in the planning and interpretation of direct gene transfer experiments.
    [Abstract] [Full Text] [Related] [New Search]