These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Targeting of natural killer-like T immunologic effector cells against leukemia and lymphoma cells by reverse antibody-dependent cellular cytotoxicity. Author: Lefterova P, Märten A, Buttgereit P, Weineck S, Scheffold C, Huhn D, Schmidt-Wolf IG. Journal: J Immunother; 2000; 23(3):304-10. PubMed ID: 10838659. Abstract: Recently, highly efficient natural killer-like T immunologic effector cells called cytokine-induced killer (CIK) cells have been described. Most interestingly, CIK cells have been shown to eradicate established human lymphoma cells in a severe combined immunodeficient (SCID) mouse xenograft model in vivo. The current study was aimed at increasing the sensitivity of leukemia and lymphoma cells to CIK cells. In particular, the authors wanted to target CIK cells to leukemia and lymphoma cells via reverse antibody-dependent cellular cytotoxicity. Binding of an anti-CD3 monoclonal antibody to CIK cell cultures derived from patients with lymphoma was shown using flow cytometric analysis. For the target side, several B-cell lines were found to express CD19 on the cell surface. There was an impressive increase in sensitivity to CIK-mediated lysis of various lymphoma and leukemia cell lines by preincubation of the targets with a monoclonal antibody against CD3. This increase could be partially blocked by preincubation with anti-CD16 (Fc receptor III) and anti-CD32 (Fc receptor II) antibodies. These data suggest that the increase in cytotoxic activity is caused by Fc receptor-mediated antibody binding. Cytotoxic activity could be further increased by adding an anti-CD28 antibody in addition to anti-CD3. Finally, there was a further increase in sensitivity to CIK-mediated lysis of CD19+ malignant cells using the bispecific OKT3xHD37 antibody with specificity against CD3 and CD19. Interestingly, preincubation of malignant cells with an anti-CD3 monoclonal antibody followed by addition of the bispecific OKT3xHD37 antibody led to a further increase of cytotoxic sensitivity compared with the addition of the bispecific antibody alone. In conclusion, these data suggest that cytotoxic activity of immunologic effector cells can be increased not only by using the bispecific antibody OKT3xHD37 in vitro but also by preincubation of CD19+ leukemia and lymphoma cells with a monoclonal antibody against CD3. In addition, the immunostimulatory effect of the bispecific antibody OKT3xHD37 can be further increased by adding a monoclonal antibody against CD3.[Abstract] [Full Text] [Related] [New Search]