These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lysine: N6-hydroxylase: stability and interaction with ligands.
    Author: Dick S, Marrone L, Duewel H, Beecroft M, McCourt J, Viswanatha T.
    Journal: J Protein Chem; 1999 Nov; 18(8):893-903. PubMed ID: 10839627.
    Abstract:
    Recombinant lysine:N6-hydroxylase, rIucD, which is isolated as an apoenzyme, requires FAD and NADPH for its catalytic function. rIucD preparations have been found to undergo time-dependent loss in monooxygenase function due to aggregation from the initial tetrameric state to a polytetrameric form(s), a process which is reversible by treatment with thiols. Ligand-induced conformational changes in rIucD were assessed by monitoring its CD spectra, DSC profile, and susceptibility to both endo- as well as exopeptidases. The first two methods indicated the absence of any significant conformational change in rIucD, while the last approach revealed that FAD, and its analog ADP, can protect the protein from the deleterious action of proteases. NADPH was partially effective and L-lysine was ineffective in this regard. Deletion of the C-terminal segment, either by treatment with carboxypeptidase Y or by mutagenesis of iucD, results in the loss of rIucD's monooxygenase activity. These findings demonstrate the crucial role of the C-terminal segment in maintaining rIucD in its native conformation.
    [Abstract] [Full Text] [Related] [New Search]