These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Negative regulation of growth hormone receptor/JAK2 signaling by signal regulatory protein alpha. Author: Stofega MR, Argetsinger LS, Wang H, Ullrich A, Carter-Su C. Journal: J Biol Chem; 2000 Sep 08; 275(36):28222-9. PubMed ID: 10842184. Abstract: Signal regulatory proteins (SIRPs) are receptor-like transmembrane proteins, the majority of which contain a cytoplasmic proline-rich region and four cytoplasmic tyrosines that, when phosphorylated, bind SH2 domain-containing protein tyrosine phosphatases (SHP). We demonstrated previously that growth hormone (GH) induces tyrosyl phosphorylation of SIRPalpha and association of SIRPalpha with SHP-2. The GH-activated tyrosine kinase JAK2 associates with and tyrosyl-phosphorylates SIRPalpha1. Here we show that JAK2-SIRPalpha1 association does not require phosphotyrosines in SIRPalpha1 or JAK2 or the proline-rich region of SIRPalpha1. However, when the C-terminal 30 amino acids of SIRPalpha1 containing the proline-rich region and tyrosine 495 are deleted, tyrosyl phosphorylation of SIRPalpha1 by JAK2 and association of SHP-2 with SIRPalpha1 are reduced. GH-dependent tyrosyl phosphorylation of JAK2 is reduced when wild-type SIRPalpha1 compared with SIRPalpha1 lacking the four cytoplasmic tyrosines (SIRP 4YF) is expressed in cells, suggesting that SIRPalpha1 negatively regulates GHR/JAK2 signaling. Consistent with reduced JAK2 activity, overexpression of wild-type SIRPalpha1 but not SIRP 4YF reduces GH-induced phosphorylation of ERKs 1 and 2, STAT3, and STAT5B. These results suggest that SIRPalpha1 is a negative regulator of GH signaling and that the ability of SIRPalpha1 mutants to negatively regulate GHR-JAK2 signaling correlates with their ability to bind SHP-2.[Abstract] [Full Text] [Related] [New Search]