These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential role of the intermolecular base-pairs G292-C(75) and G293-C(74) in the reaction catalyzed by Escherichia coli RNase P RNA. Author: Busch S, Kirsebom LA, Notbohm H, Hartmann RK. Journal: J Mol Biol; 2000 Jun 16; 299(4):941-51. PubMed ID: 10843849. Abstract: We present a systematic investigation of the thermodynamic and kinetic role of the intermolecular G292-C(75 )and G293-C(74 )Watson-Crick base-pairs in the reaction catalyzed by Escherichia coli RNase P RNA. Single turnover kinetics were analyzed for wild-type RNase P RNA and two variants with a single G to C exchange (C292 or C293), either acting on wild-type precursor tRNA (ptRNA) or derivatives carrying a complementary change at the tRNA 3'-end (G(74)CA or CG(75)A). Ground state binding of tRNA was studied using three different methods, including a novel fluorescence-based assay measuring equilibrium binding. We conclude that: (1) the role of the G293-C(74 )interaction is essentially confined to Watson-Crick base-pairing, with no indication for crucial tertiary contacts involving this base-pair; (2) the G293-C(74 )pair, although being as important for ptRNA ground state binding as G292-C(75), is much less crucial to catalytic performance than the G292-C(75) pair; (3) disruption of the G292-C(75 )base-pair results in preferential destabilization of enzyme transition-state complexes; and (4) the identity of the G292-C(75) pair, as part of the higher-order structural context consisting of coplanar G292-C(75)-A258 and G291-G259-A(76 )triples, contributes to high affinity binding of ptRNA and catalytic efficiency.[Abstract] [Full Text] [Related] [New Search]