These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Potassium channels modulate cerebral autoregulation during acute hypertension. Author: Paternò R, Heistad DD, Faraci FM. Journal: Am J Physiol Heart Circ Physiol; 2000 Jun; 278(6):H2003-7. PubMed ID: 10843899. Abstract: We tested the hypothesis that constriction of cerebral arterioles during acute increases in blood pressure is attenuated by activation of potassium (K(+)) channels. We tested the effects of inhibitors of calcium-dependent K(+) channels [iberiotoxin (50 nM) and tetraethylammonium (TEA, 1 mM)] on changes in arteriolar diameter during acute hypertension. Diameter of cerebral arterioles (baseline diameter = 46 +/- 2 microm, mean +/- SE) was measured using a cranial window in anesthetized rats. Arterial pressure was increased from a control value of 96 +/- 1 mmHg to 130, 150, 170, and 200 mmHg by intravenous infusion of phenylephrine. Increases in arterial pressure from baseline to 130 and 150 mmHg decreased the diameter of cerebral arterioles by 5-10%. Greater increases in arterial pressure produced large increases in arteriolar diameter (i.e., "breakthrough of autoregulation"). Iberiotoxin or TEA inhibited increases in arteriolar diameter when arterial pressure was increased to 170 and 200 mmHg. The change in arteriolar diameter at 200 mmHg was 20 +/- 3% and -1 +/- 4% in the absence and presence of iberiotoxin, respectively. These findings suggest that calcium-dependent K(+) channels attenuate cerebral microvascular constriction during acute increases in arterial pressure, and that increases in arteriolar diameter at high levels of arterial pressure are not simply a passive phenomenon.[Abstract] [Full Text] [Related] [New Search]