These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ripple phases induced by alpha-tocopherol in saturated diacylphosphatidylcholines. Author: Wang X, Semmler K, Richter W, Quinn PJ. Journal: Arch Biochem Biophys; 2000 May 15; 377(2):304-14. PubMed ID: 10845708. Abstract: The effect of alpha-tocopherol on the structure and phase behavior of dilauroyl-, dimyristoyl-, dipalmitoyl-, and distearoyl-phosphatidylcholines was examined using X-ray diffraction and freeze-fracture electron microscopic methods. A ripple phase was observed in all of the mixtures at temperatures well below the pretransition temperature of the corresponding pure phospholipid. Freeze-fracture studies indicated that with proportion of alpha-tocopherol less than 5 mol% a ripple phase with large periodicity (50-150 nm) predominated and with about 10 mol% alpha-tocopherol a ripple phase of periodicity about 16 nm was formed. With more than 10 mol% alpha-tocopherol planar bilayers tended to be formed. Partial phase diagrams of mixed aqueous dispersions of saturated phosphatidylcholines and alpha-tocopherol over temperature ranges about the gel to liquid-crystal phase boundary have been constructed. Alpha-tocopherol-enriched domains form ripple phases that coexist with regions of lamellar gel phase of the pure phospholipid in mixtures containing less than 10 mol% alpha-tocopherol. The presence of increasing amounts of alpha-tocopherol in the phospholipid causes an increase in the proportion of ripple phase at the expense of pure phospholipid bilayer indicating that the alpha-tocopherol-enriched domains might possess a defined stoichiometry of the two constituents.[Abstract] [Full Text] [Related] [New Search]