These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Physiological concentration of 17beta-estradiol retards the progression of severe atherosclerosis induced by a high-cholesterol diet plus balloon catheter injury: role of NO. Author: Hayashi T, Jayachandran M, Sumi D, Thakur NK, Esaki T, Muto E, Kano H, Asai Y, Iguchi A. Journal: Arterioscler Thromb Vasc Biol; 2000 Jun; 20(6):1613-21. PubMed ID: 10845880. Abstract: The molecular mechanisms of the antiatherosclerotic effects of estrogen are not yet known. We evaluated the effects of 17beta-estradiol (E(2)) on high cholesterol diet- (HCD; standard diet and 1% cholesterol) and balloon injury-induced atherosclerosis in female New Zealand White rabbits. The abdominal aortas of 40 oophorectomized (Groups 1 through 5) and 8 nonoophorectomized (Group 6) rabbits were injured by balloon catheter, and the animals were then divided into the following groups and treated for 10 weeks: Group 1, standard diet; Group 2, standard diet plus a moderate dose of E(2) (100 microg x kg(-1) x d(-1)); Group 3, HCD; Group 4, HCD plus a moderate dose of E(2); Group 5, HCD plus a low dose of E(2) (20 microg x kg(-1) x d(-1)); and Group 6, HCD in nonoophorectomized rabbits. After the treatment phase, plasma E(2) was increased up to 282.2+/-45.5 pg/mL in Group 2, 263.0+/-41.5 pg/mL in Group 4, 87. 9+/-18.8 pg/mL in Group 5, and 45.6+/-7.3 pg/mL in Group 6. HCD-mediated increases in plasma lipid levels were not changed by E(2) treatment, whereas E(2) decreased the aortic intimal thickening in Group 2 animals compared with those in Group 1 and reduced atherosclerosis in the thoracic and abdominal aortas of Group 4, 5, and 6 rabbits compared with those in Group 3. E(2) restored the impaired abdominal aortic endothelium-dependent relaxation of balloon-injured and HCD-supplemented rabbits, and E(2) increased basal nitric oxide (NO) release. The basal NO-releasing effect showed a significant, inverse relation with the severity of atherosclerosis. Plasma E(2) concentration also showed a significant, inverse relation with atherosclerotic area. In conclusion, physiological concentrations of E(2) can retard the progression of severe atherosclerosis and stabilize atheromas induced by HCD and balloon injury. The retardation may be partially mediated by endothelial NO function in vessels treated with E(2).[Abstract] [Full Text] [Related] [New Search]