These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Extracellular pH responses in CA1 and the dentate gyrus during electrical stimulation, seizure discharges, and spreading depression. Author: Xiong ZQ, Stringer JL. Journal: J Neurophysiol; 2000 Jun; 83(6):3519-24. PubMed ID: 10848567. Abstract: Since neuronal excitability is sensitive to changes in extracellular pH and there is regional diversity in the changes in extracellular pH during neuronal activity, we examined the activity-dependent extracellular pH changes in the CA1 region and the dentate gyrus. In vivo, in the CA1 region, recurrent epileptiform activity induced by stimulus trains, bicuculline, and kainic acid resulted in biphasic pH shifts, consisting of an initial extracellular alkalinization followed by a slower acidification. In vitro, stimulus trains also evoked biphasic pH shifts in the CA1 region. However, in CA1, seizure activity in vitro induced in the absence of synaptic transmission, by perfusing with 0 Ca(2+)/5 mM K(+) medium, was only associated with extracellular acidification. In the dentate gyrus in vivo, seizure activity induced by stimulation to the angular bundle or by injection of either bicuculline or kainic acid was only associated with extracellular acidification. In vitro, stimulus trains evoked only acidification. In the dentate gyrus in vitro, recurrent epileptiform activity induced in the absence of synaptic transmission by perfusion with 0 Ca(2+)/8 mM K(+) medium was associated with extracellular acidification. To test whether glial cell depolarization plays a role in the regulation of the extracellular pH, slices were perfused with 1 mM barium. Barium increased the amplitude of the initial alkalinization in CA1 and caused the appearance of alkalinization in the dentate gyrus. In both CA1 and the dentate gyrus in vitro, spreading depression was associated with biphasic pH shifts. These results demonstrate that activity-dependent extracellular pH shifts differ between CA1 and dentate gyrus both in vivo and in vitro. The differences in pH fluctuations with neuronal activity might be a marker for the basis of the regional differences in seizure susceptibility between CA1 and the dentate gyrus.[Abstract] [Full Text] [Related] [New Search]