These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression of PSD-95/SAP90 is critical for N-methyl-D-aspartate receptor-mediated thermal hyperalgesia in the spinal cord.
    Author: Tao YX, Huang YZ, Mei L, Johns RA.
    Journal: Neuroscience; 2000; 98(2):201-6. PubMed ID: 10854750.
    Abstract:
    PSD-95/SAP90, a molecular scaffold protein, attaches the N-methyl-D-aspartate receptor to cellular signaling pathways through PSD-95/DLG/Z0-1 domain interactions at neuronal synapses.(5,9) This suggests that PSD-95/SAP90 might be involved in many physiological and pathophysiological actions triggered via the N-methyl-D-aspartate receptor in the central nervous system. Here, we present evidence that suppression of the expression of PSD-95/SAP90 in the spinal cord significantly attenuated facilitation of the tail-flick reflex triggered through N-methyl-D-aspartate receptor activation but not baseline tail-flick reflex latency. Moreover, PSD-95/SAP90's messenger RNA and protein were enriched in the spinal cord and selectively distributed in the superficial dorsal horn, where PSD-95/SAP90 overlapped with the N-methyl-D-aspartate receptor. In spinal cord neurons, PSD-95/SAP90 interacted with the N-methyl-D-aspartate receptor subunits 2A/2B. It is indicated that activation of the N-methyl-D-aspartate receptor in spinal hyperalgesia results in association of the N-methyl-D-aspartate receptor with PSD-95/SAP90 and that PSD-95/SAP90 is required for noxious thermal hyperalgesia triggered via the N-methyl-D-aspartate receptor at the spinal cord level. The present findings may provide novel insights into the mechanisms for persistent sensitization of the somatosensory system.
    [Abstract] [Full Text] [Related] [New Search]