These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients.
    Author: Korngreen A, Sakmann B.
    Journal: J Physiol; 2000 Jun 15; 525 Pt 3(Pt 3):621-39. PubMed ID: 10856117.
    Abstract:
    We investigated the types and distribution of voltage-gated K+ channels in the soma and apical dendrite of layer 5 (L5) neocortical pyramidal neurones, of young rats (postnatal days 13-15), in acute brain slices. A slow inactivating outward K+ current and a fast inactivating outward K+ current were detected in nucleated patches. The slow K+ current was completely blocked by tetraethylammonium (TEA) with an IC50 of 5 +/- 1 mM (mean +/- s.e.m.) and was partially blocked by 4-aminopyridine (4-AP). The fast K+ current was blocked by 4-AP with an IC50 of 4.2 +/- 0.5 mM, but was not blocked by TEA. The activation kinetics of the slow K+ current were described by a second order Hodgkin-Huxley model. The slow K+ current displayed bi-exponential inactivation. A fourth order Hodgkin-Huxley model for activation and first order for inactivation described the kinetics of the fast K+ current. In somatic cell-attached recordings, three classes of single K+ channels could be differentiated based on their unitary conductance and inactivation kinetics, a fast inactivating channel having a conductance of 13 +/- 1 pS, a slow inactivating channel having a conductance of 9.5 +/- 0.5 pS, and a very slowly inactivating channel having a conductance of 16 +/- 1 pS. The inactivation time constants of the slow and of the very slow K+ channel corresponded to the two inactivation time constants of the slow K+ current observed in nucleated patches. This suggested that two distinct K+ channels mediated the slow K+ current in nucleated patches. The three subtypes of K+ channels that were observed in somatic recordings were present along the apical dendrite. The amplitude of ensemble K+ currents in cell-attached patches decreased along the apical dendrite as the distance from the soma increased, with a slope of -0.9 +/- 0.3 pA per 100 microm. The results suggest that the decrease of the voltage-gated K+ channel density from the soma along the apical dendrite of L5 pyramidal neurones helps to define a distal, low threshold region for the initiation of dendritic regenerative potentials.
    [Abstract] [Full Text] [Related] [New Search]