These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of the endothelin system by shear stress in human endothelial cells.
    Author: Morawietz H, Talanow R, Szibor M, Rueckschloss U, Schubert A, Bartling B, Darmer D, Holtz J.
    Journal: J Physiol; 2000 Jun 15; 525 Pt 3(Pt 3):761-70. PubMed ID: 10856127.
    Abstract:
    In this study, the effect of shear stress on the expression of genes of the human endothelin-1 system was examined. Primary cultures of human umbilical vein endothelial cells (HUVEC) were exposed to laminar shear stress of 1, 15 or 30 dyn cm-2 (i.e. 0.1, 1.5 or 3 N m-2) (venous and two different arterial levels of shear stress) in a cone-and-plate viscometer. Laminar shear stress transiently upregulates preproendothelin-1 (ppET-1) mRNA, reaching its maximum after 30 min (approx 1.7-fold increase). In contrast, long-term application of shear stress (24 h) causes downregulation of ppET-1 mRNA in a dose-dependent manner. Arterial levels of shear stress result in downregulation of endothelin-converting enzyme-1 isoform ECE-1a (predominating in HUVEC) to 36.2 +/- 8.5 %, and isoform ECE-1b mRNA to 72.3 +/- 1.9 % of static control level. The endothelin-1 (ET-1) release is downregulated by laminar shear stress in a dose-dependent manner. This downregulation of ppET-1 mRNA and ET-1 release is not affected by inhibition of protein kinase C (PKC), or tyrosine kinase. Inhibition of endothelial NO synthase (L-NAME, 500 microm) prevents downregulation of ppET-1 mRNA by shear stress. In contrast, increasing degrees of long-term shear stress upregulate endothelin receptor type B (ETB) mRNA by a NO- and PKC-, but not tyrosine kinase-dependent mechanism. In conclusion, our data suggest the downregulation of human endothelin synthesis, and an upregulation of the ETB receptor by long-term arterial laminar shear stress. These effects might contribute to the vasoprotective and anti-arteriosclerotic potential of arterial laminar shear stress.
    [Abstract] [Full Text] [Related] [New Search]