These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vasopeptidase inhibition has potent effects on blood pressure and resistance arteries in stroke-prone spontaneously hypertensive rats. Author: Intengan HD, Schiffrin EL. Journal: Hypertension; 2000 Jun; 35(6):1221-5. PubMed ID: 10856267. Abstract: The antihypertensive agent omapatrilat represents a novel approach to antihypertensive therapy, namely vasopeptidase inhibition. Omapatrilat (BMS-186716) concomitantly inhibits neutral endopeptidase and angiotensin-converting enzyme, leading to protection from degradation of natriuretic and other hypotensive peptides in addition to interruption of the renin-angiotensin system. Although the potency of omapatrilat on reduction of blood pressure has been reported, its effects on resistance artery structure and function were unknown. We tested omapatrilat in stroke-prone spontaneously hypertensive rats (SHRSP), a malignant model of hypertension, with the hypothesis that it would improve the structure and endothelial function of mesenteric resistance arteries. Ten-week-old SHRSP were treated orally for 10 weeks with omapatrilat (40 mg/kg per day). Mesenteric arteries (lumen <300 microm) were studied on a pressurized myograph. After 10 weeks, untreated SHRSP had a systolic blood pressure of 230+/-2 mm Hg that was significantly reduced (P<0.05) by omapatrilat (145+/-3 mm Hg). Omapatrilat treatment improved endothelium-dependent relaxation of resistance arteries as elicited by acetylcholine (10(-5) mol/L) but had no significant effect on endothelium-independent relaxation produced by a nitric oxide donor (sodium nitroprusside). This suggested that there existed endothelial dysfunction in SHRSP that was corrected by vasopeptidase inhibition, probably in part caused by the potent blood pressure-lowering effect of omapatrilat. Media width and media/lumen ratio were significantly decreased (P<0.05) by omapatrilat, and a trend (P=0.07) to increase lumen diameter was observed. Vascular stiffness (slope of the elastic modulus versus stress curve) was unaltered by omapatrilat. In conclusion, omapatrilat, acting as a potent antihypertensive agent, may improve structure and endothelial function of resistance arteries in SHRSP, a severe form of genetic hypertension.[Abstract] [Full Text] [Related] [New Search]